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We investigate a piecewise linear (area-preserving) map T describing two 
coupled baker transformations on two squares, with coupling parameter 
0 ~< c ~< 1. The resulting dynamical system is Kolmogorov for any c ~ 0. For 
rational values of c, we construct a generating partition on which T induces a 
Markov chain. This Markov structure is used to discuss the decay of correlation 
functions: exponential decay is found for a class of functions related to the par- 
tition. Explicit results are given for c = 2 -~. The macroscopic analog of our 
model is a leaking process between two (badly) stirred containers: according to 
the Markov analysis, the corresponding progress variable decays exponentially, 
but the rate coefficients characterizing this decay are not those determined from 
the one-way flux across the cell boundary. The validity of the macroscopic rate 
law is discussed. 

KEY WORDS: Kolmogorov system; Markov chain; rate laws; correlation 
function decay; relaxation process. 

1. I N T R O D U C T I O N  

The mode rn  theory of dynamica l  systems is concerned with the a t tempt  to 
unders tand  the global  behavior  of systems with a k n o w n  local 

structure. (lm) One  of the most  fundamenta l  problems in this respect, 
namely,  the connec t ion  between macroscopic  irreversible behavior  and  

microscopic reversible evolut ion laws, is at the center of ergodic theory. 
Tradi t iona l ly  irreversible p h e n o m e n a  are described at a finer level by 

stochastic processes such as r a n d o m  walks in some conf igura t ion space. 
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The main problem then becomes the relation of these random walks to the 
underlying deterministic, reversible evolution in phase space: such a con- 
nection can be explicitly established for certain classes of system. The most 
striking results along these lines have been obtained for Bernoulli systems: 
an appropriate definition of "configuration space" as a partition of phase 
space maps the deterministic motion onto a sequence of independent states 
visited by the system. (5'6), Although Bernoulli systems are quite exceptional, 
similar results may be obtained for Kolmogorov (K) systems, which are 
characterized by a strong instability of phase point trajectories. (4) 

A number of models have been constructed with the aim of analyzing 
the main features of simple relaxation processes. Some of the more physical 
models are billiards (2'7) and the Lorentz and Rayleigh gases, (2'8) while the 
more abstract ones are one- or two-dimensional maps. (3'9) Discrete-time 
mappings (cascades) may prove a much more flexible tool for investigating 
this field than gas models; in fact, the analysis of continuous-time 
dynamical systems is often carried out in terms of such maps constructed 
from the Poincar6 section of the flow. 

In this paper we propose a model, discrete-time dynamical system with 
one arbitrary parameter, c, characterizing the coupling between two 
strongly mixing systems. The resulting composite system is still sufficiently 
simple to admit a detailed dynamical and ergodic analysis. More 
specifically, our model consists of two phase space cells: within the cells 
phase points evolve by baker transformations (1'6~ and may pass from one 
cell to the other through the action of a third overlapping baker transfor- 
mation. This triple baker model exhibits many of the features of more com- 
plex coupled dynamical systems, in particular those related to the resulting 
structure of the macroscopic law. Continuous-time models of coupled 
systems intended for similar uses have been discussed recently by other 
authors.(1~ 

In Section 2 we describe our model and briefly suggest a 
phenomenological analog in terms of a simple relaxation process of the dif- 
fusion or reaction type. The dynamical analysis in Section 3 investigates 
the ergodic properties of the model and its underlying mathematical struc- 
ture. 

For rational values of the coupling parameter c, we construct in Sec- 
tion 4 a partition of the phase space on which the triple baker transfor- 
mation induces a Markov chain with a doubly stochastic transition matrix. 
We discuss the equivalence between the deterministic system and the 
stochastic process in terms of symbolic dynamics and its implications for 
the decay of correlation functions. Section 5 is devoted to special cases: for 
c = 1/2, another partition is found to generate an isomorphic Bernoulli 
stochastic process; for the case c = 2  -k, the Markov process associated 
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with the triple baker model is further analyzed with the focus on the decay 
constants characterizing the Markov process. 

The classical macroscopic analysis of our model is presented in Sec- 
tion 6. The chemical analogy is developed in more detail by associating 
phase points in the individual cells with distinct chemical species; the triple 
baker model crudely mimics some features of the dynamics of isomerization 
kinetics. The rate law for the progress variable ~(t) of the chemical reaction 
is derived exactly from the dynamical evolution laws by projection 
operator techniques. As a consequence of the (metric) Markov structure for 
rational c the characteristics of the memory kernel appearing in this 
generalized rate law may be described in detail. 

The triple baker model is a very simple coupled dynamical system: it 
can only be regarded as a prototype of the more complex physical systems 
it is intended to model. Nonetheless, it displays a rich dynamical structure 
and our exact results permit a discussion of the validity of the macroscopic 
rate law and a study of the microscopic structure of the rate coefficients 
appearing in this law. 

2. TRIPLE BAKER M O D E L  

The triple baker model possesses a phase space s composed of two 
cells A and B; the time evolution of phase points within ~2 for each discrete 
time step is accomplished through the successive action of three baker 
transformations: two baker transformations acting solely in the A and B 
cells followed by a third baker transformation acting on a rectangle 
overlapping the cells (Fig. 1). This third transformation couples the 
dynamics of the individual cells and allows phase points to "leak" from one 
cell to the other. The description and characterization of this leaking 
process are some of the main objectives of this study. 

The model may be defined mathematically as follows. Let I and J be 
semiclosed intervals I =  [0, 1 [ and J =  [ -  1, 1 [. The triple baker model is 
the discrete-time dynamical system (g?, ~a,/~,  T) where the phase space 
g2 -- I x J is endowed with the Lebesgue measure d# = �89 dy = d#x dl~y and 
the Borel a-algebra of measurable sets ~a-  The automorphism T is a 
sequence of three baker transformations defined on the rectangles A = I x / ,  
B = I x I '  and C = I x H, where I' = [ - 1, 0 [ and H = [ - c, c [: 

T= BcBBBA (2.1) 

Letting ~o = (x, y) denote a phase point of s we have 

BA~O = ~(2X, y/Z), 0 ~< X < 1/2 (2.2) 
[(2X-- 1, ( y +  1)/2), 1/2 ~<X< 1 
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Fig. 1. Diagram of the phase space for the triple baker model showing the upper-A and 
lower-B cells. The overlapping baker transformation acts on the rectangle between c and - c .  
The figure also shows how four rectangles (labeled 1 to 4 and indicated by dashed borders) 
evolve under one application of T to produce the rectangles with solid borders. 

if co s A and B A co ~- o9 if O9 S B; 

BBo9 = ~(2x, ( y -  1)/2), 
~ ( 2 x - -  1, y/2), 

0 ~ < x < l / 2  
(2.3) 

1 / 2 ~ < x <  1 

if c o e B  and B~co = co if co~A;  

Bco9 = ~(2x, (y  - c)/2), 
[ ( 2 x  - 1, (y  + c)/2), 

0 ~ < x <  1/2 
(2.4) 

1 / 2 ~ < x <  1 

if co e C and Bco9 = co if o9 c f2\C. 
Thus,  the baker  t rans format ions  B A and B8 act on the disjoint cells A 

and B while B c effects a coupl ing between them. 
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The evolution of functions f(co) (square integrable with respect to p) 
defined on (2 is determined by the unitary operator U induced by T: 

vf(co) = f ( r ~ )  (2.5) 

while the evolution of distribution functions p(co) on/2  is given by 

p~(co) = U* '  po(CO) = po(T-~co)  (2.6) 

This simple dynamical system mimics many features of the more com- 
plex, deterministic systems composed of coupled phase space regions men- 
tioned in the Introduction. When c is small, the two cells are weakly 
coupled and one expects that the long-time decay of this system will be 
governed by the slow leaking process. In this context B A and B e may be 
considered as a (rough) stirring or a diffusion within the cells while one 
could call Bc a "reaction" converting A-type phase points to B-type phase 
points. This in turn suggests that a phenomenological description in terms 
of a classical rate law may be applicable in some circumstances. Let N~(t) 
be the "number of phase points" in ~ = A, B at time t. The discrete-time 
chemical rate law then reads 

NA(t + 1 ) = (1 -- ks) NA(t) + krNB(t) (2.7) 

with a similar expression for N~(t + 1). The model's symmetry dictates that 
kf= kr. Since NA + NB = const we may alternatively write the rate law in 
terms of the progress variable ((t) = 6NA(t) = --6NB(t), where 
6N~(t)=N~(t)-N~q with N~ q the number of phase points in ~ at 
equilibrium: 

~(t) = (1 - r c  1) ~ ( t -  1)= (1 -z~  -I) t((0) (2.8) 

The relaxation time rc is defined in terms of the rate constants as 
r~-l=k=k s+kr. Since Neff=N~q it also follows that ~(t)= 
[NA(t) -- NB(t)]/2. 

We may now ask the following questions: For the dynamical system 
(s T), under what circumstances does the phenomenological rate law 
(2.7) or (2.8) apply, and what is the microscopic structure of the rate coef- 
ficients characterizing the decay of the system to equilibrium? We return to 
these questions in Section 6 after characterizing the system and presenting 
exact solutions for rational values of c. 
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3. D Y N A M I C A L  A N A L Y S I S  

Like the baker transformations B~(e e {A, B, C} ), the triple baker T is 
piecewise affine and linearizes to 

6x"+i) = (2 0 1/o)m(6x") (3.1) 
6y~+ \ 6 y J  

with m = 1 if BABscon r C and m = 2 if B~B~co n ~ C. Thus, T is expanding 
along the x axis and contracting along the y axis. The stable W~ (unstable 
W~) manifolds of a point e) = (x, y) are composed of vertical (horizontal) 
lines in f2; the discontinuities prevent W~ and IV, from extending across the 
whole phase space. The Lebesgue measure/~ is invariant for T (as for each 
B~); we show below that # is ergodic for T on f2. This result allows direct 
computation of many time-averaged quantities. For instance, the Liapunov 
exponents are 

2 + = - 2  = lim - l l n f X n - ( l + c )  ln2  (3.2) 
n ~ o v  /2 ~ X  0 - -  

for almost all x ~ f2. 
The ergodic properties of the model are conveniently proved by first 

considering a one-dimensional map related to the inverse map. Indeed, the 
y component of T-l(x, y) is independent of x, while the x component 
depends on y: 

T-I(x, y)= [(x + k)/m, ~(y)] (3.3) 

Here z(y) is the one-dimensional map on J sketched in Fig. 2 while 
m --- T'(y) ~ {2, 4} and k takes integer values from 0 to 3 depending on y. 
This construction shows the skew-product form of (f2, T 1) with base 
(J, ~). It is also easily seen that, as T is dilating by a factor of 2 (at least) in 
the x direction (f2, T-1) is isomorphic to the natural extension ~4) of (J, ~). 

We first discuss the case c <~ 1/2. Consider the monotonic function 
0: [0, 4[  ~ [-0,1[ such that ~ ( 2 u - 1 ) = 2 0 - l ( u ) - I  (rood2) for any 
u ~ [0, 1 [, and its unique, continuous, monotonic extension 
0: [0, 4]-- .  [-0, 1]. Since O(u2)-O(Ul)<U2-Ul for any 0~<u 1 <u2~<4, a 
classical result of ergodic theory (12) implies that 0 defines a valid fexpan- 
sion. Then the partition {A~I~}, 0~<i~< 3, of J determined by the points 
{ - 1 , - 1 / 2 ,  0, 1/2, 1} (i.e., by the continuous pieces of ~) generates the 
Borel a algebra Nj  through successive refinements by ~. Letting A~~ J 
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Fig. 2. Sketch of the one-dimensional map  v(y) versus y used in the construction of the 
skew-product form for (~,  p, T). The upper two panels show ~c and VAZB used to construct  
z = zazBrc ,  while the lower panels show z for c = 0.4 ( <  1/2) (left) and c = 0.6 ( >  1/2) (right). 
Also shown is the evolution of the partition element A~ 1} under ~. 

n %.1 --k (1) and A~ ") (~k= 1 Aik for any sequence i = (il ..... i,), 0 ~< ik ~< 3, one sees 
that for any n > 1 and i 

(i) {A~")} is a partition of J 
1) 

(ii) zA~.)..i~Al;.2i, (3.4) 

(iii) (.) 1 .  (A(n -1)  
]Ay(zJil...in ) < 21~y, i2. . ' i  n ) 

(iv) A~ ") is an interval (maybe empty) 

Moreover, for any c > 0, the endomorphism ~ of J is e x a c t ,  (4) viz .  there is 
no measurable subset V <  J, 0 < #y(V)  < 1, such that for any m > 0 there is 
a measurable set W,, satisfying V= r - " W m .  For  this, it suffices to show 
that V W c J with #y (W)>  0, 3m/> 0 with #y(T m W ) =  1; as the intervals A! ") 
generate a basis of ~ j  for n --+ oo, we only need to prove it for W~A~ ") 
(mod 0) for some n > 0  and i. Now, if W=A~ 1), then ~W= [ - 1 ,  2c[ and 
zmW= [ - 1 ,  2mc[ c~ J: take m > [ l o g 2 c [ ;  if W=A~ 1), then ~W~A~ 1). The 
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cases A (21) and A ~) are symmetrical. If W~ A[") with #y(A!")) > 0 taking 
m >f n + 1 + [log 2e[ is also sufficient by (iii) in (3.4). 

When c >  1/2, similar arguments h01d starting from the monotonic 
function 0: [0, 6[ -~  [-0, 1[ such that T (2u -1 )=20 -1 (u )  - 1 (mod 2) for 
0 ~< u <  1, and using the generating partition determined by the points 
{ - 1 ,  - ( 1  + 2c)/4, (1-2r  0, ( 2 c -  1)/4, (1 + 2c)/4, 1}. Properties (3.4) 
also hold in this case. 

It is well known (4) that an exact endomorphism is ergodic and that its 
natural extension is a K system; the entropy of any generating partition is 
equal to the Kolmogorov entropy of the system. This entropy is directly 
given by a theorem on f expansions: 

h~(T)=hx(~)=fjln-~ydy=(l+c)ln2 (3.5) 

The triple baker model is thus a K system, a property that signals strongly 
random behavior of nearby trajectories. 

4. THE E Q U I V A L E N T  M A R K O V  SHIFT  

The above dynamical analysis established certain general properties of 
the model, which hold for any value of e. In the sequel we focus on the case 
of rational c and use the fact that for such c values this system is 
isomorphic to a Markov shift. This isomorphism allows one to easily 
establish the properties of the functions of interest here and has 
implications for the existence Of a phenomenological rate law. We construct 
this isomorphism below and discuss some of its features. 

4.1. The Markov ian  Part i t ion 

A Markov shift isomorphic to the triple baker system ((2, #, T) for 
c=p/q(p,q~No) can be constructed from the partition of f2 into 2q 
horizontal bands: 

~ =  { Q k = I x  [ ( k -  1)/q, k/q[ I 1-q~k<~q} (4.1) 

Without loss of generality, q may be taken to be even. The iterates of this 
partition are defined as 

T~ = {Q.-k}, T2~ = {Q.- -k}, "" (4.2) 
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with Q._k=TQ.k,Q.__k=T2Q.k. The corresponding products are 
Q.kt = Q.k c~ TQ.t and 

~m = T'  ~ = T'  Q.k [ 1 - q <<. k <<. q 
t = n  t = n  

(4.3) 

We write Pk=#(Q.k) and pkt=#(Q.ki). Since s o m e  Q.kh may have null 
measure, we remove the corresponding atoms from ~m. 

The invariant measure # is Markovian for the partition ~: the image 
of any band is a family of horizontal strips; since baker transformations cut 
the bands vertically before stretching them, the later evolution of a strip 
Q.kh is determined by the fragmentation of Q.k in more strips (Fig. 3) 
regardless of h. It is now obvious that, for any product like Q4khm, 

~(a.jkhm) = Pjk P k  lPkh P h  lphm (4.4) 

which is just the Markov property with the transition probabilities 

mjk = P( To9 e Q.k I o9 e Q. j) = 2qpkj (4.5) 

s 
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Fig. 3. The Markovian partition ~ for c = 1/4. In this figure we have used an overbar for 
partition elements with negative labels. The intersection set is shown in the right panel of the 
figure. 
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So far all of our statements apply to BA,  B s ,  and B c equally, and the 
Markov matrix for T can be written as J/t = J/CXgBJgA. Since the elements 
of a matrix J/~ are simply 1, 0, or 1/2, the elements of ~ are 0, 1/2, or 1/4. 
For instance, we have for c = 

J / =  

1/4: 

"1/2 0 1/2 0 0 0 0 0 ~ 

1/2 0 1/2 0 0 0 0 0 

0 1/2 0 1/4 1/4 0 0 0 

0 1/2 0 1/4 1/4 0 0 0 

0 0 0 1/4 1/4 0 1/2 0 

0 0 0 1/4 1/4 0 1/2 0 

0 0 0 0 0 1/2 0 1/2 

0 0 0 0 0 1/2 0 1/2 

(4.6) 

As all the atoms of ~ have the same measure, the transition matrix J/l is 
doubly stochastic. ~13~ Now, since T is bijective in s the time-reversed 
process on the partitions T'~ is another Markov chain, with transition 
probabilities given by the transpose of Jg, M r. 

4.2. ~ Is G e n e r a t i n g  

Since all bands Q.k are fragmented by T in at least two strips of 
maximal height 1/4q, each action of T on Q.k reduces the height of the 
bands by a factor of two (at least). Therefore ~ contains bands of heights 
6 y ,  <~ l /q2  ~ + 1. Similarly T-1 fragments the bands vertically with same fac- 
tor so that ~ ~  n contains rectangles of width 6xn <~ 2 n. Thus, ~ o  generates 
a partition of Q in rectangles of arbitrary smallness: as n --+ oo, it generates 
the Borel algebra on ~. 

Since 2 is a generating, Markovian partition for the K system 
(s ~a,/*,  T), the transition matrix ~g is irreducible and aperiodic (thus 
mixing). The matrix elements also determine its entropy: 

hk = -- ~P;k  In mjk = (1 + c) In 2 (4.7) 
k,j 

Because the partition ~ is Markov with matrix /g,  its powers D.g 1 are 
Markov with an expanded matrix //{(n~ whose elements, eigenvalues and 
eigenvectors are simply related to those of J/r For instance, if n = 2: 

m < 2 )O.kh = P(  Tco E Q.hk I CO ~ Q. ;i ) = 6 ;k m kh (4.8) 

In general the expanded matrix Xr (") will have the same eigenvalues as / /1  
and a highly degenerate and defective zero eigenvalue. The backward 
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process generates another hierarchy dg r(") for ~o ~; d/Zr(,) has the same 
eigenvalues and similar characteristic spaces to that of Jr These expan- 
ded matrices are not doubly stochastic. 

4.3. Symbolic Dynamics 

For any partition ~ it is possible to introduce a symbolic represen- 
tation of the dynamics in which the action of T amounts to a shift on a set 
of symbols. The alphabet * corresponds to the labels of the elements of 
partition 2: Z = {k [ 1 - q ~< k ~< q}. Any phase point co is represented by its 
symbolic name (kneading sequence) (3) in Z: if the decimal dot is used to 
mark the initial time, the point co = (... k 1 kokl '")  is in the atom Q.kt at 
time - t .  The evolution operator is then a shift on the space of sequences 
Z "z isomorphic to ~ _ ~ ,  which may be described a doubly infinite matrix 
composed of Kronecker symbols describing transitions between points: 

m( . . . .  ~(coo, ~l)  = 6(col - Tco0) (4.9) 

For the generating partition ~, distinct phase points have distinct sym- 
bolic names, though some names may be meaningless: The Markov 
property of ~, that only (and all) sequences (kl) with valid transitions 
(mk,_l,kr are meaningful; the ergodic invariant measure /~ on ~2 is 
represented in Z z by the Markov measure with transition probabilities mij. 

The refinements ~ and ~k_~ deserve special attention. When ~ is 
generating, they form imprimitivity families, (14) which are the "largest" 
extension of our Markov chain, and correspond to describing a point by 
the right (or left) part of its name indicating all its past (or future) 
locations. The evolution operator is a Markov shift on one-sided sequences 
zN; for ~ the transition matrix Jg + has the form 

m+(.h, .k)=mhoko [ I  6(k t+ l -h t )  (4.10) 
t = 0  

Conversely, T-~ corresponds to moving the decimal dot to the right and 
induces a deterministic evolution on ~ described by the same Kronecker 
products. Such one-sided Markov chains are singular (since their atoms 
have zero measure) and have been proposed as the basis of a microscopic 
theory of irreversibility (15). 

4.4. Decay of Correlation Functions 

The Markov representation (~, J~) of the system also allows one to 
discuss the decay of correlation functions 
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(f(co) Ut g(e)) ) = f~ f(o)) g( Tt~o) dkt(o)) 

= (g(co) U-tf(co)) (4.11) 

for integrable functions g(~o) and f(co) defined on O. 
If g and f are constant over the atoms of 2 (i.e., step functions with 

respect to ~), one may decompose them in terms of the characteristic 
functions {)~.k} of {Q.k} as 

f(co) = ~ akz.k, g(~o) = ~ bkp; ~Z.k (4.12) 
k k 

and obtain 

( g U - t f )  = ~ akbh(d/lt)hk = ~ ~iS~. (4.13) 
h,k i 

where the sis are the eigenvalues of Jg and fi and ~i are the coefficients of 
the decomposition o f f  and g in the corresponding (right and left) eigenvec- 
tors. These simple correlation functions exhibit exponential decay toward 
the asymptotic value (s=  1 ) ( f ) ( g ) .  

Similarly, if f and g are constant over the atoms of ~ + " ,  they can be 
expressed in the corresponding expanded characteristic bases, so that 

( g U - t f )  = ~  g, is~Z+ Mrs+ n(f, g; t) (4.14) 
i 

where the second term vanishes for t > n. 
However, this argument does not imply that all correlation functions 

between square-integrable functions (approximated by such expressions) 
decay asymptotically as a sum of exponentials fixed by the spectrum of ~/  
(see the comment on "ghost" eigenvalues in Section 5). 

5, SPECIAL RESULTS 

5.1. The Case c = 1 / 2  

When c = 1/2 some further results can be established. In particular, we 
construct an independent finite partition ~t and directly compute the time 
evolution of a cell characteristic function in terms of this partition. Since 
the partition is also generating we show explicitly the isomorphism of 
(~2, T) to a Bernoulli shift. 
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Consider the partition ~ =  {Ro, R1, R2}, whose atoms are R o = I x  
[ - 1 / 2 ,  0[  and R1 = I x  [0, 1/2[ with measures p o = P l  = 1/4, and R2 = I x  
[ - I, - 1/2[ u I x [ 1/2, 1 [ with P2 = 1/2. 

We first show that R is independent for T, i.e., 

# ( t ~  T t R k , ) = ~ i # ( R k )  (5.1) 

with any finite I =  Z and any (k,)~ {0, 1, 2}( A sketch makes it clear that 
T"~(n ~>0) is composed of horizontal bands while T - I ~  is composed of 
vertical bands: (5.1) follows immediately. 

Next we introduce a symbolic representation for the partition sets, 
which facilitates the calculation. Let 

R.kokl... ~, = Rko C~ TRkl ~ "'" c~ T~Rk,, ki ~ {0, 1, 2 } (5.2) 

As in Section 4.3, the notation can be made compact by writing 
k = kok~'" "kn. The A and B cells have the simple representation 

A =  U R.2ml and B =  ~) R.2md (5.3) 
m ~ 0  m ~ 0  

where 2 m symbolizes m successive indices 2. Since the Markov partition for 
c =  1/2 is ~ = {A ~R.2,  R.1, R.o, BnR .2}  and since A and B are generated 
by ~ ,  .~ is obtained as a coarse graining of ~ .  Therefore 
~-~o~ = ~-~oo = ~ .  ~ is independent and generating: it is thus Bernoulli. (4) 
The transition probabilities for ~ are simply its atoms' measures {Pi}. As 

is a coarse graining of .~, the kneading sequences of any phase point co 
for .~ and ~ can be related. 

In general any measurable function f(co) can be decomposed as 

2 2 

f (co)=  lim Z "" ~-'~ FkZk(co) (5.4) 
n ~  k-n=O kn=O 

where Zk is the characteristic function of Rk for k ~  {0, 1, 2 } , - n  ~< i~< n 
and Fk is the cell average 

Fk = #(Rk) -1 ~R f(co) d#(co) (5.5) 
k 

In view of (5.3) the characteristic function of cell A may be expressed as 

~A = ~ Z.2ml=Z'Z.k (5.6) 
r n = 0  k 
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where the prime on the summation signifies that only (right,infinite) 
sequences k beginning with .2ml are admissible. 

It is now straightforward to compute the evolution of the 
autocorrelation function of ZA(CO), 

sA(t) = J,~ zA(o~) zA(r'co) dU(co) 

= Z '  ~ ' f _  z(Q., c~ r'Q.k) d/z (5.7) 
k h 

Since the partition ~ is independent, the integrals are readily computed 
and 

SA(t) = 1/2 ~ '  #(.1) = (1 + 2- ' ) /4  (5.8) 
1 

Hence, SA(t ) has a simple exponential decay to its equilibrium value when 
c = 1/2. Noting that the spectrum of a Bernoulli transition matrix is {0, 1 }, 
we observe that the exponential factor 1/2 here comes from the con- 
sideration of sequences 1 of increasing length. The same decay could be 
found directly from the Markov representation where A = Q.~ w Q.2 and 
Spec / r  {0, 1/2, 1 }. In Section 6 we show that this correlation function 
also determines the evolution of the progress variable for a particular class 
of initial states. 

5.2. The  Case c = 2  - K  

The partition .~ for the triple baker model discussed in Section 4 was 
instrumental in establishing a number of general results for this model. 
However, the eigenvalue spectrum was not determined for arbitrary 
rational c values. On the other hand the results of the previous section 
showed that coarse graining .~ for the case c = 1/2 produced an indepen- 
dent and generating partition in terms of which explicit calculations were 
possible. Here we consider the case c = 2  K (K~>2) for which explicit 
results may also be obtained. Coarse-graining ~. does not generally yield a 
Bernoulli partition as it did for c = 1/2, but another partition with Markov 
measure, which facilitates the calculations, may be constructed. 

Consider the following partition ~ = {Rk}( -- K ~< k ~< K, k ~ O) 
obtained by coarse-graining ~: 

R l = I x E 0 , 2 1 - ~ [ a n d R k = I x [ 2  k -K-1 ,2k -K[  for K~k>~2 

R _ l = I X [ - - 2 1  k, 0[ a n d R  k=Ix[ - -2  k - K , - 2 k - K - 1 [  

for - K < ~ - k ~ < - 2  (5.9) 
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The Markov property of ~ is proved by the same argument as for 2; 
each baker transformation fragments a band into strips with half its size. 
Moreover, the strips produced by the fragmentation of each band belong 
to different bands, so that ~ generates the "fiber algebra" I •  
Backward refinements of ~ are also seen to generate ~ .  

The coarse-grained Markov chain has the (singly) stochastic matrix: 

"-1/2 1/2 

1/2 0 

1/2 0 
d//gR= 

1/2 

1/4 1/4 

1/4 1/4 

1/2 

1/2 

1/2 

1/2 

1/2 

(5.10) 

whose characteristic polynomial is readily derived by recursion. 
Since N is obtained by coarse-graining 2, all its characteristic 

functions are sums of characteristic functions of ~ and the spectrum of J/l R 
must be part of the spectrum of ~ .  On the other hand, ~ is also coarser 
than N~-~: the spectrum of J l  is included in that of jgR(m. Thus, Spec 
J / =  {0} w Spec j~R.3 

The characteristic polynomial of ~ is 

M ( s ,  c ) =  s N ( s -  1) 0K(S) (5.11) 

With N =  2 K+ 1 _ K -  1. The simple eigenvalue 1 corresponds to the unique 
stationary (uniform) state. The K nontrivial eigenvalues are the roots of the 
polynomial 

~i~(s )  = 2s  K --  (s  x +  1 _ 2 - K -  1) / (s  _ 1/2) (5.12) 

3 No "ghost" eigenvalue (like 1/2 for c= 1/2 in Section 5.1) can appear here as _~ is coarser 
than a finite power of ~. 

822/38/5-6-16 
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These special eigenvalues can be computed perturbatively as K ~ oo: 

(i) The largest eigenvalue lies close to 1: 

So "" 1 - c/2 + O( c 2) (5.13) 

and its eigenvector is close to the A - B  odd uniform vector: 

( 1 1 . . . 1 1 - 1  . . . .  1 - 1 ) J g = ( l l . . .  1 0 0 - 1  . . . .  1 - 1 )  (5.14) 

For small c, the slowest process is thus the leakage between A and B, so 
that asymptotically the correlation function Ci(t ) of f(o~) will satisfy: 
Cs(t + 1)~soCs(t ) as t--, oo. 

(ii) The other eigenvalues lie close to lp ,  = �89 (n r 0): 

s , = p ,  ~ - ~ 2 ( p , - 2 ) / ( p , - 1  ) + O ( K  -2) (5.15) 

These eigenvalues describe the mixing in A and B induced by the 
stirring BA and B~, as their moduli and regularly spaced phases suggest. 

6. M I C R O S C O P I C  BASIS OF THE RATE L A W  

The characterization and solutions of the triple baker model presented 
above enable one to investigate the microscopic basis of the rate law deter- 
mining the decay of the progress variable to equilibrium. In particular, the 
fact that the dynamics for rational c can be mapped onto a Markov shift 
immediately implies that the progress variable decays as a sum of exponen- 
tial terms since the A and B cells are unions of the ~-partition elements; 
hence a macroscopic law does apply for large times. In this section we 
examine the structure of the rate coefficient characterizing this decay in 
some detail. 

A formally exact expression for the decay of ~(t) is easily derived from 
the evolution equation (2.6) of the distribution function with the aid of 
projection operator techniques. (16) It is convenient to assume here that the 
distribution function p,(co) is normalized to the conserved number N of 
phase points in the system, ~ p, d# = N. To reinforce our chemical analogy 
we shall henceforth refer to phase points in cell ~ as species e. 

Consider the deviation of the distribution function from its 
equilibrium value peq(CO)=N: 6pt(o~)=pt(co)-N. The progress variable 
takes the form 

~(t) = 5NA(t) = f ZA(co) 6p,(co) dp = -SN~( t )  (6.1) 



Solvable Kolmogorov System 1043 

Given some initial distribution of phase points 6po(CO), the equation deter- 
mining the decay of ~(t) can be derived by employing the orthogonal pro- 
jection operators 

~h(og) = ~  (Z~(~) h(~)> (6.2) 

where h(co) is an arbitrary integrable function defined in f2 and /~  = 1/2 is 
the measure of cell a. Note that ~N~ = 6~N~. Applying N = NA + ~B and its 
complement ~• = ~ - N  to (2.6) yields 

r = c ( t )  ~(o) + I(po, t) (6.3) 

where 

I(po, t)= <zA(~o) u'~l @o(~O) > (6.4) 

and 

C(t) = 4SA(t) - 1 (6.5) 

SA(t) is defined by (5.7) for any value of c. Since we are primarily con- 
cerned with the intrinsic evolution of ~(t) characterized by the correlation 
function C(t) rather than with the decay arising from an arbitrary initial 
condition (~po(t), we consider the particular class of initial states where 
l(po, t) vanishes. As an example of such states suppose that the initial den- 
sity is uniform over each cell of phase space, with a disequilibrium between 
the species 

p0(co) = N + 7NZA(CO) -- 7Nze(co) (6.6) 

where 7 is the fractional excess of species A. Clearly g~• 3po(CO) = 0 and the 
calculation of ((t) for this class of initial states is equivalent to that of the 
autocorrelation function C(t). 

In the phenomenological description (2.8) of the rate processes, the 
decay of ~(t) is determined by the rate coefficient k=kf+kr.  A 
generalization of this phenomenological description can be obtained by 
casting the equation of motion for ~(t) in a memory kernel form. Starting 
from t~he evolution equation (2.5) applied to ~b(c0)=ZA(o~)--)fB(co) and 
using ~he projection operators g~ and ~• we find~17): 

t 1 

~(t+ 1)= (! +e )  ~(t)+ ~ Y(I)  ~ ( t - l -  1) (6.7) 
l = 0  
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where the memory kernel of(l)  is defined by 

of(l)  = ((~_L U-  l~b(co)(~. U) '+1 (b(c,)) (6.8) 

and the coefficient of ~(t) is C(1) = 1 - c .  An effective rate coefficient for the 
decay process can be deduced using the z transform 

~,(z) = ~ g(t)z t (6.9) 
t=0 

of (6.7): 

~(Z)= [-I -- (1--  C) Z - I - - ~ f ( Z ) Z - 2 ]  -1 4(0)  (6.10) 

Comparison with the transform of the phenomenological rate law suggests 
the definition of a generalized rate coefficient as 

~(z) = c - z - l ~ ( z )  (6.11) 

The projection operator formalism produces a decomposition of the rate 
coefficient into two parts with simple physical interpretations: the first con- 
tribution is due to the "one-way-flux" C(1) of the species across the cell 
boundary while the second arising from the memory kernel takes into 
account recrossings of this boundary and is a "nonequilibrium" con- 
tribution to the reaction rate. 

The results of the previous section and the above formulation of the 
rate law provide a framework for discussing the dynamics of the cell-boun- 
dary crossing. The exact short-time decay of the progress variable is easily 
found from considering the action of U on the characteristic function ZA: 

~(t)=(1--(Itl+l)c/2)~(O), 0 < l t l < t *  (6.12) 

where t* is given by 2 t* lc = 1. Hence, ~(t) possesses two linear portions in 
a short-time region whose duration is determined by the magnitude of c: 
the initial time step with slope - c  determined by the one-way flux across 
the cell boundary and t* time steps with slope -c /2 .  The restriction of the 
linear region to times I tl < t* can be understood from the following obser- 
vation: Iteration of an initially uniform A density under U produces 
fragmentation; when the "holes" introduced in the A cell reenter the "reac- 
tion" C region the linear decay breaks down. Thus t* is related to the time 
or number of iterations it takes a parcel of probability fluid with height e to 
traverse a cell and reenter C. 

All the behavior apart from the initial one-way-flux contribution is 
contained in the rate kernel of(t) ,  whose structure we now examine in 
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more detail. Since the decay of r is a sum of exponential terms one may 
represent :,~(z) as a finite continued fraction, which is equivalent to a 
representation in terms of a sequence of equations in memory kernel form 
like (6.7): 

t - - i  

~( t+  1)=~.a~(t)+ ~ ~+t(l)aC~.(t-I-1) (6.13) 
l=O 

where c~n=~:~(~(1)/~(0) and ~f f l ( t )=d( t ) .  When c=2 -K, this represen- 
tation yields especially simple results since the memory kernel JgK(t) 
vanishes. 

As an illustration, plots of r for c = 1/2, 1/4, and 1/8 are shown in 
Fig. 4. For c =  1/2 the Bernoulli and Markov representations yield 
~(t)/~(O) = 2 t and linear combinations of exponentials in the other cases. 
The linear and exponential regions of the ~(t) decay are evident in the 
figure, 

We may further extend the analogy between the dynamics of this 
model and real rate processes. The one-way-flux contribution c in (6.11) 
may be written in the form 

c =  (0(~o)(1 - u )  0(o)) ) (6.14) 

1.0 

~(~) 
[(o) o.5 

I 

t*(V4)=3 t*(J/8)=4 
Fig. 4. Decay of the progress variable c = 1/2, 1/4, and 1/8. In this figure we have also 
indicated the initial finear decay regions of t* time steps. The dashed lines are extensions of 
these linear regions. The solid lines connecting the points are only guides to the eye. Similar 
results for c = 2 -K  can be deduced from the discussion in Section 5.2. 
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which is an exact analog of the RRKM rate coefficient formula. (is) The ker- 
nel f ( t )  provides corrections to this formula. 

Our exact solutions have the following implications for the description 
in terms of a phenomenological rate law: 

(i) Since the decay of ~(t) is a sum of exponentials for rational c, the 
system admits a description in terms of a macroscopic rate law provided t 
is large enough. 

(ii) The phenomenological rate law is valid for all t only for the 
special value c = 1/2 (and for 0 and 1). 

(iii) For c = 2  -K (K large) the eigenvalue closest to unity can be 
determined from perturbation theory and one finds ~(t + 1)= (1 - c / 2 )  ~(t) 
for t large. Hence, the rate coefficient after (2.8) is k =  c/2, which differs 
from the one-way-flux value of c. We also remark that the decay constants 
of the model are not the Liapunov exponents or K entropy. 

Some of the implications of the results (i)-(iii) are rather interesting. 
In general one might expect that the phenomenological rate law with k 
given by the one-way-flux value will apply when the cell leaking rate is 
small. In fact this is only true for the large value of c = 1/2; for c = 2 K the 
nonequilibrium corrections lead to a lowering of the rate coefficient by a 
factor of two. Thus, the mixing within the A and B cells is generally insuf- 
ficient to destroy the correlations set up by the "reaction." It is not difficult 
to construct a class of models where the mixing within the cells can be 
varied for a fixed c. Consider replacing the automorphism T by the follow- 
ing form: 

T (") = BcB~B~A (6.15) 

i.e., for each time step in the evolution one carries out n applications of the 
baker transformation within the A and B cells. In the limit n ---, oe one has 
perfect mixing within the ceils prior to the application of the "reactive" B c  
transformation. In this situation the Kproperty of (e, B~) suggests an 
approximation of the dynamics by a two-state Markov chain on {A, B} 
with transition probabilities computed from the one-way fluxes across the 
cell boundary. This leads to 

~ ( t + l ) = ( 1 - c )  ~(t) (6.16) 

as n --* oe. Clearly n = 1 even with small c is insufficient to achieve complete 
mixing within the cells and (6.16) does not hold. 
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7. CONCLUSIONS 

We have shown by this example that coupling two K systems could 
result in a new K system with an interesting structure. 

An important aspect of our analysis is the construction of a partition 
on which the invariant measure is Markov for any rational value of c: the 
corresponding symbolic representation provides the proper setting for the 
discussion of various ergodic properties. For instance, the decay of 
(measurable) correlation functions should be envisaged in this context 
rather than in terms of the unitary evolution operator: it is only in the 
Markov representation that one obtains nontrivial eigenvalues hinting at 
the irreversible evolution of the macroscopic model. 

For the special case c =  1/2, we succeeded in constructing a finite, 
measurable Bernoulli partition, leading to a much simpler analysis of 
correlation functions. It is well k n o w n  (4'19) that any finite Markov shift (as 
ours) is isomorphic to a Bernoulli shift ( J ,  S) but the canonical Bernoulli 
partition ~ is infinite and S is obtained as some power of J{. We also suc- 
ceeded in coarse-graining our partition for c =  2 -K (while preserving the 
Markov property), but the general case of irrational c may' admit no finite 
partition with a Markov property. However, we have not investigated this 
case in any detail and successive rational approximations of c may describe 
it well enough. 

The model, although extremely idealized, displays a number of 
features characteristic of more complex, coupled, conservative, dynamical 
systems. The exponential decay of the progress variable (implying the 
existence of a macroscopic law) follows directly from the expression of the 
cell characteristic functions as S-partition step functions; if the phase space 
regions corresponding to a given species (cells) cannot be simply expressed 
in terms of partition elements, more complex decays are possible. In 
addition, the breakdown of simple one-way-flux models for the rate coef- 
ficient in our K system is a feature already noted by Berne and de Leon (1~ 
in their study of the Siamese stadium billiard, a K flow. Other analogies 
may be drawn between their system and the triple baker model. 

All the results presented in this paper are based on measure-theoretic 
properties: Liapunov exponents, isomorphic Markov shifts, correlation 
functions, etc. A simple examination of the case c = 1/2 suggests that our 
model has peculiar topological dynamics: the partitions ~ and ~ have dif- 
ferent topological entropies (as defined in Ref. 19). The measure-theoretic 
properties, especially the Markov shift representation, are also the starting 
point for a deeper discussion on the manner in which irreversibility can 
arise in a microscopically reversible system. 

A number of extensions of the model are possible. In Section 6 we 
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proposed a model in which an arbitrary number of stirrings in the 
individual cells could be carried out for each discrete time step. Such a 
model could provide a means for studying the progressive passage to a sim- 
ple rate law. Another variant of the triple baker system is a ladder model 
where the phase space is a pile of N squares and by an obvious extension 
the dynamics proceeds through baker transformations acting in the 
individual cells followed by baker transformations in the overlapping 
regions. The system models a diffusion process. The study of such extended 
models may provide some insight into the nature of the dynamical 
behavior of complex coupled systems. 
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